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TECHNICAL NOTE 3369

MINIMUM-DRAG BODIES CF REVOLUTION IN A NONUNIFORM
SUPERSONIC FLOW FIELD

By Conrad Rennemann, Jr.
SUMMARY

A general expression for the cross-sectional-aree distribution of
the minimim-drag body of revolution of given volume and length in a non-
uniform supersonic flow field 1s derlved on the basis of linearized
theory. This result 1s restricted to cases where the potential of the
disturbance to the uniform stream can be expanded in a Taylor's series
about the body axls. The theory 1s applied to the determination of the
minimum-drag body of revolution of glven volume and length located in
the flow field of a parabolic body. Several representative calculations
show that the interference pressures from a2 main body have a negligible
effect on the shape for minimm wave drag of the satellite body (minimum-
drag body).

INTRODUCTION

The aerodynamic characteristics of airplanes designed for supersonic
flight speeds are influenced by the interference effects between the
various components of the configuration. 1In the analysis of lnterference
effects based on linearized theory, it proves convenlent to introduce an
interference velocity potential which 1s defined as the difference between
the velocity potential for a complete configuration and the sum of the
veloclty potentials of the isclated components. Thils potential arises
from properly satisfying the boundary conditions for the flow past the
complete configuration. The velocity or pressure st any polint of the
flow fleld is the sum of the velocities or pressures derived from the
potentials of each of the components plus the interference potentlal.

For example, the pressure acting on = glven component, such as a wing,

is considered to consist of three terms: the pressure that would act on
the wing if 1t were in a uniform flow fleld, the pressures from the other
components of the configuration evalusted on the wing, and the pressure
derived from the interference veloclty potential. The last two terms

are the interference pressures actlng on the wing.
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The calculation of the forces acting on a configuration is compli-
cated by the interactions between the components. Many investigations
have been made of these interference effects, most of which have con-
sidered the 1lift of wing-body combinations. Interference effects on the
wave drag of & configuration are also of importance, but to date little
work has been done in this direction. Friedmen and Cohen (ref. 1) have
calculated the wave drag of a system of three bodies of revolution to
determine the importance of the orientation of the bodies. Their study
considered the interference wave drag arising from the pressures from
one body acting on another. They concluded that the wave drag of such a
confliguration can be significantly less than the sum of the wave drags
of the various components provided the bodies are located for favorable
interference drag.

The bodies consldered by Friedman and Cohen in thelr interference
calculations were designed for minimum wave drag in a uniform stream.
However, additional wave-drag reductions should be possible by properly
shaping the bodies to take advantage of the interference pressures. The
pressures from one body acting on another body can be consldered as
arising from a disturbance to a uniform stream; that is, a body lying in
the flow field of another body can be considered to be in a nonuniform
stream.

In the present paper, the wave drag of a body of revolution in =
nonuniform supersonic stream is derived on the basis of slender-body
theory. The area distribution of the minimum-drag body of revolution in
a nonuniform supersonic stream is then obtained for the auxiliary condi-
tions of given volume and length. This result 1s used to determine the
area distribution of the minimum-drasg body of revolution lying in the
flow field of another body of revolution. Calculations for several
representative cases are included.

SYMBOLS

a,b,c,d constants

AJ(x),Bj(x) singularity strengths

Pp - P
C T ———
Py Peo U2
2
D wave drag

Dgg wave drag of Sears-Haack body
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AD difference between wave drag of Sears-Hasack body in flow
field of main body and wave drag of minimum-drag satellite
body

6(x2) =le % any

K(xl) = ¢1(leo,0) +f-ll %lylg(gl:O;O) + ¢1Z12(§l,0,0) d.gl

1 length of satellite body
7 length of main body
M Mach number
m outwardly directed normal to base contour
D loceal pressure
P, stream pressure
P 2
o= Fu
R(x) body radius at any station x, -—; <x< %
R(%,G) base radius
Rpax maximum radius of parabolic body
Ty radius of cylinder of integration
X,r,0 cylindrical coordinates

S(x) = xR2(x)

B (xl) = i(i

(1/2)%
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[¢) gtream velocity
vV = Volum;
(1/2)
X,¥,2 rectangular coordinates
X, = =
1 /e
y
173k
2
Zq = ——
173/
X,y coordinate system for location of satellite body with respect
to meln body
g =M -1
P local density
P stream density
o} surface of lntegration

@l(x,y,z) velocity potential of a small disturbance to a uniform stream

mg(x,y,z) veloclty potential of a distribution of singularities along
body axls required to represent flow past body in & unl-
form stream

@5(x,y,z) interference veloclty potential of a second distribution of
singularities along body axis which 1s required to cancel
flow through surface boundary due to nonuniformity of flow
field

@l(xyy)z)

¢l(xlxylle) = -—-jiﬁg*——

@Q(X:YJZ)
1/2

¢2(xl’leZl)

8
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@ﬁ(X)YJZ)
¢3 (Xl’yl’ Zl) = T

=P + P+ @5
o veloclity potential
p==z-pZ

1 2

§,n,§l,nl dummy variables of Iintegration

A prime denotes the derivative with respect to the argument of the
function.

Subscripts denote partial derivatives with respect to the indicated
variable.

ANATYSTS

Drag Equation

In the analysis of the flow past a slender body in a nonuniform
stream, based on linearized theory, the nonuniform field is considered
to arise from a small disturbance to a uniform stream of velocity U.
The potential @ of the flow about the body cen then be expressed as

¢ = % UCXl + ¢1 + ¢2 + ¢5) (1)

where

% nondimensional velocity potential of a smell disturbance to
the uniform stream

¢2 nondimensional velocity potentisl of a distribution of singu-
larities along the body axis required to represent the flow
past the body in the uniform stream

¢5 nondimensional interference veloclty potential of a second

distribution of singularities along the body axis which is
required to cancel the flow through the surface boundary
due to the nonuniformity of the flow fileld
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The wave drag 1s calculsted from the momentum transfer through sa
surface enclosing the body. The velocities and pressures occurring in
the expression for the momentum transfer are related to the dlsturbance
velocity potentials through equation (1) and a linearized pressure rela-
tionship. In order to facilitate the integration of the resulting equa-
tions, the potential ¢l is expanded in a Taylor's seriles about the body

axis (xl-axis) as
@1 (x1,31,21) = B1(x1,0,0) + zl¢lZl(xl,o,o) + yl¢lyl(xl,o,o) + ... (2

where a consistent approximation is obtalned by retaining the first three
terms. The details of this analysis are presented in the appendix, where
it is shown that the wave drag of a slender, closed body of revolution
can be written sas

q<1/2)2 i f f 8" (81 )10g [xy - &1 [dE; dxy -

1
2‘jp s'(xl)K'(xl)dxl (3)

-1

where

2(x;,0,0) + ¢1212(x1,o,o)

Kl(xl) = ¢lx1(xl,o,o) + 6y

Y1

and s(xl) is the nondimensional body cross-sectional-ares distributlon.

The double-integral term of equation (3) 1s the wave drag of a slender,

closed body of revolution in & uniform supersonic flow field as derived
by Von Kérmfn (ref. 2) and the single-integral term is the interference

wave drag, which depends primsrily on the pressures from the disturbance
to the uniform stream integrated over the body surface.

Minimum-Drag Bedy

The body cross-sectional-area distribution s(xl), which minimizes
equation (3), will be determined for the auxilisry conditions of given
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volume and length of the body. This 1s an isoperimetric problem of the
calculus of varistions, and, when the method outlined in reference 3 is
employed, an integral equation for s(xl) is obtained as

f]_ il(g-'lé)l =a + bx; + cxl2 + &K(xl) (4)

where a, b, and c¢ are arbitrary constants. The solution of equa-
tion (4) for s'(xl) is (ref. 4)

1 -

s'(xl) =%—-l—x12lzi + -g- +<% - a)}L_L - b}L_LE - cxl-j - 2H(xl)] (5)

where

() - [ F ;_fl

and d 1s an arbitrary constant. Integration of equation (5) glves
for s(xl)

3/2

- 2G(xl)] (©)
where

1 B(m)
)=

and use has been made of the condition s(-1) = O.
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The arbitrary constants a, b, c¢, and d occurring in equation (6)
are determined by use of the end-point conditions

s'(-1) = s'(1) =8(1) = 0

and the auxiliary condition

1
u/il s(xl)dxl =V = Co?étant

where V 1s the volume of the bedy divided by (%)5. Upon the deter-

mination of these constants, the area distribution of the optimum body
of glven volume and length in a nonuniform supersonlic stream is expressed
as

s(xl) = %(% V(l - x12)5/2 + 2(}1&1) (sin_lxl + %) + [H(—l) - H(l)] \‘l - xl2 + [% 6{1) - (1) ~

-

_1)];&\;5 - x12 - (1 - x12)3/2 {g’.)% a(1) + --Ei:( 1) - H( )] - Ji._fr _j: G(xl)d_xl} - 2G(xl)> .
(n

“1)
R i
B(n, ) =fl Lol - ag

-1 M- f

1
For a uniform supersonic stream, ¢l(xl,yl,zl) = 0 and hence K(gl) = 0.
Then
2
8 > 3/
s(xl> = 3E-V(; - Xq )
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which is the Sears-Haack minimum-drag body of revolution for a given
volume and length (refs. 5 and 6). Equation (7) is in the form of the
Sears-Haack body plus a correction term which is & function of the param-
eters describing the nonuniformity of the flow field considered.

APPLICATION

The area distribution for the minimum-drag body of revolution of
given volume and length in an arbltrary nonuniform supersonic stream is
presented in equation (7). In order to apply this equation to any given
problem, an expression for K(xl) is required. In many cases, an -
analytical expression for K(xl is not easily cbtained, or, if it is,
the Integrations of thils expression that must be performed to obtailn the
body area distribution appear to make any application of equation (7)
almost prohibitive. However, it has been found that in some applications
it is possible to approximate K(xl) by a polynomial of the fourth order

or less, and that a polynomial expression for K(xl) can easily be inte-

grated to obtain the required area distributlion of the minimum-drag body
of revolution. For the polynomial

2 3 L
K(xl) = 8y + 81X] + 85X1° + exxy” + ayx

the area distribution of the minimum-drag body i1s, from equation (7),

3/2 3/2(a
s(xl) = %g(l - xlg) + (l - xl2) (i% - %? Xy - %-a4x12> (8)

8V o\3/2
where 5; 1 - X, ) is the area distribution of a Sears-Haack body

of revolution. (In order that the area distribution S<Xl) mey always

be positlve, the volume-to-length-cubed ratio V of the body cannot
become smaller than a limiting value dependent on ez and & . See

eq. (8).) The wave drag of the minimum-drag body of revolution in this
nonuniform stream is, from equations (3) and (8),

q(;;g)ra - 8‘;}[’2 + ll-V(ae + 8‘14-) - %(3332 + a,)+2> (9)
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Equetion (8) for the area distribution is in the form of the area dis-
tribution of the Sears-Haeck body of revolution plus & correction term
independent of the volume of the body. This correction term is also
independent of the constant, linear, and quadratic terms in K(xl).

These terms do not affect the minimum problem since the constant and
linear terms do not contribute to the wave drag and the guadratic term
merely adds a constant amount of wave drag for a fixed volume, which is
independent of the body cross-sectionsl-area distribution. (See eq. (3).)

2
For casesewhere K(xl) ~ ¢l<xl,0,0), that 1, when ¢lzl (xl,0,0)
a?d ¢lyl (xl,0,0) are small compared with ¢1Xl(xl,0,0), which will be

discussed subsequently, K'(xl) is -1/2 times the interference pressure

caused by the nonuniform stream. Then the previous discussion concerning
the terms 1in a polynomial K(xl), which affect the shape for minimum drag,

can be restated in terms of the interference pressure coefficient. The
shape for minimum drag is independent of the level of the pressure and
the pressure gredient; only the curvature and higher order terms in the
interference pressure distribution influence the minimum shape.

Equstion (9) for the drag of the minimum-drag body 1s in the form
of the drag of the Sears-Haack body in this nonuniform streem (first two
terms of eq. (9)) plus & correction term which is independent of the
volume of the body. This correction term 1s the difference between the
wave drag of the Sears-Haack body in the nonuniform stream and the wave
drag of the minimum-dreg body and hence i1s the wave-drag reduction due
to shaping the body for favorable interference drag. This drag reduc-
tlon is constant for a given nonuniform stream, independent of the volume-
to-length-cubed ratio of the bedy. This implles that the percent drag
reduction will Increase with decreasing volume for bodies of equel length.

Nonuniform Flow Field Produced by a Body of Revolution

One case where an expression for K(xl) can be obtained is when

the nonuniform flow field 1s produced by & body in a uniform flow field;
that 1s, the theory developed in the preceding sectlons can be used to
determine the shape of the minlmm-drag satellite body located in the
flow field of a main body. In this case ¢l(xl,o,o), which must be known

to determine K(xl), is the disturbance potential of the maln body evalu-

ated along the satellite-body axis, provided disturbances originating at
the satellite body and subsequently reflected from the main body do not
influence the satelllte body. This condition imposes a limiting minimum
distance between the two bodles 1f any part of the satellite body lies
between the nose Mach cone and the forecone from the tail of the maln
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body. This limiting distance depends on the length of the satellite body
and the Mach number. If the satellite body 1s closer to the main body
than this limiting distance, K(xl) i1s difficult to obtain because there

wlll be a contribution from the area distribution of the satellite body
which 1is not known at the outset of the problem. Some type of iteration
procedure would probably have to be employed in such cases.

If the nonuniform flow field under conslderation arises from the
disturbance field of a smooth body of revolution, some simplification in
the form of K(xl) is possible. The derivative of K(xl) wilth respect

to xy, that is, K'(xl), is composed of three terms: ¢lx1(xl,0,0),

2

¢ly12(xl,o,0), and ¢lzl <x1,0,0>. In general if ¢l(xl,0,0) arises
2 2

from & smooth body of revolution, ¢ly1 (xl,0,0) and ¢lzl (xl,0,0)

will be small compared with ¢lxl(xl,0,0) if the radial distance from

the body 1s sufficiently large. For exemple, calculations performed
with the linearized disturbance potentiel from a parabolié body of revolu-

tion of fineness ratio 10 showed that ¢l (xl,o,o) was of the order of
X
10 times larger than ¢ly 2(xl,O,O) and ¢l 2(xl,0,0) at stations that
1 21

were 2.5 maximum body radii from the body. Consequently, only & small
error is Incurred in such cases by neglecting the contributions of

2 2
¢lyl (x,,0,0) and ¢121 (x,0,0) to K'(x)). Then K'(x))= ¢lx1(xl,o,o)
or K(xl) = ¢l(xl,0,0); that 1s, K(xl) is the linearized disturbance

potential of the main body evaluated slong the satellite-body axis, and
a polynomlial approximation for K(xl) 1s easily obtalned.

The drag of the minimum-drag satellite body has been calculated for

two ratios of volume to (1/2)3, V = 0.037010 and V = 0.009253, which
correspond approximately to satellite-body fineness ratlos of 10 and 20,
respectively. A sketch of the configuration is shown in figure 1. The
location of the satellite body is designated by the coordimates u,¥,

|

vhere p=%2-8£< X and ¥y are the coordinates of the nose of the
1

satellite body, X =y =0 are the coordinates of the nose of the main
body, and 1 1is the length of the main body. The lines u = Constant
are Mach lines from the main body in the plane passing through the axes
of both bodies. In both cases the main body is a parabolic body of
revolution of fineness ratio 10 and the satellite body is one-fourth the
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length of the main body. The Mach number is JE; and ¥ = 2’5Rmax’ where
Ryax 1is the maximum radius of the main body. TFor the cases considered,

this distance between the bodles corresponds to the limiting minimum
distance. A polynomial expression for K(xl) was obtained for each

location of the satellite body by fitting a polynomial to the linearized
potential of the parabolic body evaluated along the satellite-body axis
and the drag was calculated from equation (9).

The results of these calculations are presented in figure 2 as the
difference between the wave drag of & Sears-Haack body in the flow field
of the main body and the wave drag of the minimum-drag satellite body
AD divided by the wave drag of the Sears-Haack body DSH‘ This quan-~

tity AD/D is plotted ageinst u, the locatlon of the satellite body,
SH )

and represents the fractional drag reduction obtalned by shaping the
satellite body for favorable interference drag. For both cases of fig-
ure 2, the minimum-drag satellite body has less drag than the Sears-
Haack body in the same stream, as would be expected, but the percent drag
reduction is less than 2 percent for most locations of the satellite body.
Consequently, since these are failrly representative cases, little or no
advantage can be expected from shaping satellite bodles for favorable
interference drag, when the interference pressures arise from a smooth
body of revolution sufficlently far removed that the satellite body i1s
not influenced by reflected disturbances. The important parameter appears
to be the locatlion of the satellite body as shown by Friedman and Cohen
in reference 1.

In order to illustrate the type of area distribution that gives
minimum wave drag in the nonuniform flow field arising from a parabolic
mein body, the minimum-drag area distribution for a satellite body of
fineness ratio 10 (V = 0.037010) located at p = O is presented in fig-
ure 3. The area distribution of the Sears-Haack body of the same volume
and length is also included for comparison purposes. As would be expected,
there is little difference between the area distributions of the two
bodies.

Nonuniform Field Produced by Wings

The theory that has been presented 1s also applicable when the non-
uniform flow field is produced by & wing, provided the body is off the
wing. This restriction arises from the derivation of equation (1) where
it was assumed that the potential of the dlsturbance to the uniform stream
can be expanded in a Taylor's series about the body axis. However, for a
wing, ¢lzl 1g discontinuous in the plane of the wing and a Taylor's serles

expension in that region is not possible.
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The calculations made for the two-body problem indicated that, for
a nonuniform flow field produced by a smooth body, the correction to the
Sears-Haack shape was determined primarily by the curvature of the pres-
sure distribution in the nonuniform stream. In general, the curvature
of the pressure distribution arising from a smooth wing will not be v
greatly different from that for a smooth body. Consequently, only small
drag reductions are expected for satellite bodies located in the flow
field of a wing.

Langley Aeronautical Laboratory,
Natlonal Advisory Committee for Aeronautics,
langley Field, Va., November 18, 195L.



14 NACA TN 3369
APPENDIX

WAVE-DRAG EQUATION FOR A SLENDER BODY IN A

NONUNIFORM STREAM

The wave drag of a slender body can be determined by the momentum
transfer through a surface enclosing the body as

)

n.ip 4 n.q)(I-q) a Al
Gipd+/;p(q)(c1)c (A1)

where the continulty equation 1s

f 03.5 do = 0 (A2)
(s}

and where

o] enclosing surface

n unit vector, directed inward, normal to o
1 unit vector in the x-direction

a velocity vector

) local pressure

p local density

x,r,0 cylindrical coordinsates

(See fig. 4.) It proves convenient to take the enclosing surface as two

planes normal to the x-axis at x =-% and x = % and a cylinder
r = r, = Constant. When a disturbance velocity potential @ defined by

o = U(x + 9) (A3)
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is introduced into equations (Al) and (A2), the wave drag may be expressed
as

r

T 21 21 o
= f Of (p + pm»UZCPX) Y r dr d8 - f f 2 (p + PmUZCPX) . r dr @8 -
0 0 X=-z 0 R( 9) X=x

=)
1/2 p2x ' Al
[0 edf(ne) | wo ax-mS B
-1/2v0 r=T,
where
Dy, base pressure
Sy base area
R(%,e) base radius

and @xa has been neglected inasmuch as it is small in comparison with
Py

In ovder to relate the wave drag to the body geometry and to the
disturbance to the uwniform stream, the form of ¢ must be known. If
the nonuniform fleld is considered to arise from a small disturbance to
a uniform stream, ¢ can be expressed &as

P =9+ Pyt Py (45)

where

@l veloclty potentlal of a small disturbance to the uniform
stream

@2 veloclty potential of a distribution of singularities along
the body axis required to represent the flow past the body
in the uniform stream

P Interference veloeity potential of a second distribution of

> singularities along the body axis which is required to can-
cel the flow through the surface boundary due to the non-
uniformity of the flow fileld

In order to facilitate the Iintegration of the momentum equation, the
potentilal ? is expanded in a Taylor's series sbout the body axds

(x-axis) as
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CPl(X,y',Z) = CP]_(X:O;O) + 29y (X:O:O) + yCPJ_y(x,O,O) + e . . (Aé)
z
The slender-body approximation for the potential Py + Pz ‘of the singu-
laritles distributed along the body axls is

A (x) ‘
Dy + 05 = log, B2 - = y Bo'(8) logg Jx - tfag +
-1/2
g r%r Aj(x) cos Jj6 + BJ(x) sin 39:] (AT)

where Aj(x) and Bj(x) are the singularity strengths to be evalusted
from the boundary conditions on the body. (See ref. T.)

The local pressure p 1s related to the stream pressure p, and
the disturbance potential ¢ by

o 2
P =Py - —é— [EQPX + CPr2 + (CPTG) :] (AB)

where @XE has been neglected inasmuch as it is small in comparison with
2 2
@x, @re, and (2?) + In meny cases the contribution to @ra and (i?)

2
2 P
from the nonuniformity of the flow fleld (@l and (_%Q) ) will be
T
small compared with @lx. However, these terms are retained in order to

treat cases where they are important. The first three terms of equa-
tion (A6) are then retained as consistent with this approximation.

Combining equations (A4) and (A8) yields
D 25 ro o cpe 2 I‘O 5 D 2
3 =‘jp JF . . + (——) r dr 48 - Jf JFEﬂ ¢, + (_Q) rdr d6 -
r i r r
0 R(E,G) x=% o Yo x

1/2 nen
ISR EEINS
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where
_P " Px
Cry P
2
and
p
q = U

The form of the potential @ = @l + @5 + ¢3 1s such that it satisfies
Laplace's equation in the cross-flow plane. Then

o 2
P, +<—> = VPV

1/2

o
2 /:1/2 fo (q)rcpx) ro a9 dx - cpbsb (A10)

a4

where (@ s dR(l,e) is a contour integral about the base of
base dm /=L 2

the body and m 1is the outwardly directed normal to the base contour.

When equations (A5), (A6), (AT), and (A1l0) are combined and the integra-

tions over 6 are performed, the following equation is obtained for the
drag of a slender body in & nonuniform stream:
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/ x
e snon) - & [ @ v e o] - o oo & & 0 ool e

/2

f a9 ]
2 II/Q [%x(x,o,o)xl(x) - gt(x,o,o)kll(x) - %X(XJOJO)W") + %("’0'0)31 (x)}ax - j?ma (q: ;)x_% aa(z,e) - Cp 8, (A1)

where

Vo5 (-1)-
AJ( 2)— J( 2) ©
that is, all the singularity strengths are zero at the nose of the body.

For a body of revolution the contour integral of equation (All) can
be partially evalueted. Then

ﬂ{ase(¢ gg)x . ClR('z,e) - Ao(é)[ko;:/2) log, Egh - %? /2 Ag'(8) log, l% - Eld§ + @l(%,o,o)] +

=3 ~1/2

it (509) w2 (599)] -« 5 b)) cum

where Ry 1s the base radius for body of revolution.
In order to calculate the drag of a prescribed body, the strength
of the singularities must be related to the geometry of the body. For

a body of revolution, the following relation 1s obtalned from the bound-
ary condition:

o, = Ry(x)ay (n13)

where R(x) is the redius of the body at any station x. From equa-
tions (A3), (45), and (Al3)

U(@lr + 9o, + ¢5r) = Rx(x)U<l + 9y, + P, t ¢5X)
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or approximately

Dt P+ 93 = R, (x) (ALk)

and combining equations (A6), (AT), and (Al4) gives

- A,(x)cos j8 + Bs(x)sin je] - @7 (x,0,0)cos 6 +
2R (x) jgl R(x)0*T [3 ! tz

¢1y(x,0,0)sin o = Rx(x) (A15)

From equation (A15) the singularity strengthe are related to the body
geometry by setting

. A5 (x) _
Ao(x) = EﬂR(X)Rx(X) = 5'(x) Re(x) = -CPlZ(X,O,O)
. (A16)
22 (x,0,0) (x) = By(x) = 0 1
= Q x,0,0 A.(x) = By(x) = J >
Rz(x) 1y J J |

Combining equations (A1l), (Al2), and (Allk) gives the expression

b 8'(1/2) 1/2 3 ? 1 1/2 A1/2 - .. i
D. ___;___ijfl/2 8"(x) loge|} - x| ax - éf,fC Jﬁz/e 8" (x)8" (&) loge|x - & a8 ax

a 1/2

2
. R %
s(;{e) loge.ﬁ_z_b._cpbsb_gf

2 ; o o
-1/2 3 (x) I}Plx(xxoyo) + q)l.b' (xio)o) + q)lz (X;O;O)]d-x (AlT)

for the wave drag of a body of revolution in a nonuniform stream. For a

closed body of revolution S'(%) = S(%) = 0 and equation (Al7) becomes
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/2 ~1/2
D _ 1 " X - -
q Eufz/ef_z/e SIS logel »;-,l o

2
E/izje S'(x) l}p]—x(x:oyo) + qJJ_yQ(X,O;O) + CPlZ2(X’O,O)]d_x (Ale)

It 2/2 is used as the unit of length, equation (A18) can be expressed
in nondimensional form as

q(z/e)2 2ﬁ~jp .]p "(51) loselxl - §1| dgq dxqy -

1

2]?1 s'(xl)K'(xl) dxy

where
K'(x; ) = ¢1Xl<xl,o 0)+ ¢ly12(xl,o,o) " ¢1212(xl,o,o)
and
ox
Xl = T
1 = 2%
_ _8(x)
(1) (2/2)%
and
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